
Maven2 plugin
A Maven 2 / Maven 3 plugin that wraps the Cargo Java API

Functional tests

The usage of Cargo for executing functional tests on a container does not mandate this m2
plugin. You could also directly use the Cargo Java API from your Java unit test classes (JUnit,
TestNG, etc), as described on the page. The choice is yours, thought theFunctional testing
Maven2 plugin is generally more straightforward to use and integrates better with the whole build
process (with profiles, easier to use deployer, proxy server support, etc.)

Table of Contents

The documentatation for this Maven2 plugin includes:

Installation: explains how to install the plugin
Getting started: explains how to use the plugin on several use cases
Reference Guide: provide reference documentation for all configuration options
Tips: tips for using the plugin

Getting Started

Very quick start

CARGO can be directly run on any existing Maven2 Java EE project (WAR, EAR or other) by running:

mvn clean verify
org.codehaus.cargo:cargo-maven2-plugin:run

This will create a default and start it using the Cargo Maven2 plugin with yourJetty 7.x installed local container
Maven2 project's deployable (a WAR, for example) deployed to it; so you can run manual tests (as a first
introduction).

What is magic is that if you now want to run the same tests with you simply need to run (in one line):Tomcat 7.x

mvn clean verify
org.codehaus.cargo:cargo-maven2-plugin:run
 -Dcargo.maven.containerId=tomcat7x

-Dcargo.maven.containerUrl=http://archive.ap
ache.org/dist/tomcat/tomcat-7/v7.0.16/bin/ap
ache-tomcat-7.0.16.zip

That command will automatically download Tomcat 7.0.16 from the specified URL (taking into account any proxy
server setting you would have in Maven2/Maven3), instantiate the container, create a local configuration with your
application and run it. It will also save the downloaded container in the default directory (see the Maven2 Plugin

 for details), so it won't get downloaded when you run the same command twice.Reference Guide

Now, if you want to run this time on with with the HTTP port set to , run:Glassfish 3.x 9000

mvn clean verify
org.codehaus.cargo:cargo-maven2-plugin:run
 -Dcargo.maven.containerId=glassfish3x

-Dcargo.maven.containerUrl=http://download.j
ava.net/glassfish/3.1.1/release/glassfish-3.
1.1.zip
 -Dcargo.servlet.port=9000

CARGO's main advantage is that the commands and configuration remains the same for any version of any
container supported by CARGO -be it Tomcat, Jetty, JBoss, JOnAS, GlassFish, WebLogic, etc.

Like it? Well, keep on reading, then!

More examples

As usual the best way to learn to use a tool is through examples.

We have several that contain sample Maven2/Maven3 projects with different use cases for theMaven2 Archetypes
CARGO plugin, we would really recommend that you check them out. For more details, read here: Maven2

.Archetypes

In addition here are the typical uses cases covered by the plugin:

Deploying to a running container
Generating a container configuration deployment structure
Merging WAR files
Starting and stopping a container

The Cargo Maven plugin in detail

Here are the different goals available to call on this plugin:

Goals Description

cargo:start Start a container. That goal will:

If the plugin configuration requires so, installs
the container.
If the plugin configuration defines a container
with a , it willstandalone local configuration
create the configuration.
If the plugin configuration contains one or
more , it will deploy these to thedeployables
container automatically.
If the plugin configuration contains no deploya

 but the project's packaging is Java EEbles
(WAR, EAR, etc.), it will deploy the project's
deployable to to the container automatically.
And, of course, start the container.

Note: A container that's started with willcargo:start

automatically shut down as soon as the parent Maven
instance quits (i.e., you see a or BUILD SUCCESSFUL

 message). If you want to start aBUILD FAILED

container and perform manual testing, see our next
goal .cargo:run

cargo:run Start a container and wait for the user to press CTRL +
 to stop. That goal will:C

If the plugin configuration requires so, installs
the container.
If the plugin configuration defines a container
with a , it willstandalone local configuration
create the configuration.
If the plugin configuration contains one or
more , it will deploy these to thedeployables
container automatically.
If the plugin configuration contains no deploya

 but the project's packaging is Java EEbles
(WAR, EAR, etc.), it will deploy the project's
deployable to to the container automatically.
And, of course, start the container and wait for
the user to press to stop.CTRL + C

cargo:stop Stop a container.

cargo:restart Stop and start again a container. If the container was
not running before calling , it willcargo:restart

simply be started.

cargo:configure Create the configuration for a , withoutlocal container
starting it. Note that the and cargo:start cargo:ru

 goals will also install the container automatically (n but
).will not call cargo:install

cargo:package Package the .local container

cargo:daemon-start Start a container via the daemon. Read more on: Carg
o Daemon

cargo:daemon-stop Stop a container via the daemon. Read more on: Cargo
Daemon

cargo:deployer-deploy (aliased to cargo:deplo
)y

Deploy a deployable to a running container.

cargo:deployer-undeploy (aliased to cargo:und
)eploy

Undeploy a deployable from a running container.

cargo:deployer-start Start a deployable already installed in a running
container.

cargo:deployer-stop Stop a deployed deployable without undeploying it.

https://jira.codehaus.org/browse/CARGO-780
https://jira.codehaus.org/browse/CARGO-780

cargo:deployer-redeploy (aliased to cargo:red
)eploy

Undeploy and deploy again a deployable. If the
deployable was not deployed before calling cargo:de

 (or its alias) itployer-redeploy cargo:redeploy

will simply be deployed.

cargo:uberwar Merge several WAR files into one.

cargo:install Installs a container distribution on the file system. Note
that the goal will also install thecargo:start

container automatically (but will not call cargo:insta
).ll

cargo:help Get help (list of available goals, available options, etc.).

The configuration elements are described in the section.Reference Guide

https://jira.codehaus.org/browse/CARGO-780
https://jira.codehaus.org/browse/CARGO-780

	Maven2 plugin

