
1.  
2.  
3.  

4.  

1.  

2.  

3.  

Session Clustering with Terracotta

Session Clustering with Terracotta

Jetty has been integrated with , providing a great clustering solution.Terracotta
Since Jetty 6.1.12, the Jetty-Terracotta integration has been rewritten to provide better performance.
The Jetty-Terracotta integration is not bundled by default; it must be built from sources following the instructions
below.

Requirements
You need J2SE 1.5 or greater to build and run the Jetty-Terracotta integration.
You need Jetty 6.1.12 or greater.
You need to install Terracotta, we have tested  or greater. We will refer to the installationTerracotta 2.6.4
directory as .$TC_HOME

You need to download  Jetty TIM (Terracotta Integration Module).this
We are working on an updated version of the official Jetty TIM and update the instructions when the new
version of the official Jetty TIM is compatible with the current Jetty-Terracotta integration. Don't be fooled by
the '1.1.1' version on the official TIM, you really need this 1.0.4. The official Jetty TIM will be downloadable
from the Terracotta Forge.
Copy the downloaded Jetty TIM file  to .tim-jetty-6.1-1.0.4.jar $TC_HOME/modules/

Build instructions
Download and unzip a source bundle of Jetty 6.1.12 or greater from . We will refer to the installationhere
directory as .$JETTY_HOME

Build it:

$ cd $JETTY_HOME
$ mvn clean install

Copy the target/jetty-terracotta-sessions-6.1.12.jar you just built into :$JETTY_HOME>/lib/ext

$ cp contrib/terracotta/target/jetty-terracotta-sessions-6.1.12.jar
$JETTY_HOME>/lib/ext/

Jetty Configuration Files

Configuring Jetty to use Terracotta consists of creating a single TerracottaSessionIdManager per Jetty instance to
generate unique session ids, and then setting up a special TerracottaSessionManager per each webapp that you
want to be clustered.

The TerracottaSessionIdManager

One TerracottaSessionIdManager is configured per Jetty instance to generate unique session ids. These are the
relevant lines to add to add to a separate :$JETTY_HOME/etc/jetty-terracotta.xml

http://www.terracotta.org
http://www.terracotta.org/web/display/orgsite/Download
http://dist.codehaus.org/jetty/


<Configure id="Server"
class="org.mortbay.jetty.Server">
    <New id="tcIdManager"
class="org.mortbay.terracotta.servlet.Terrac
ottaSessionIdManager">
        <Arg>
            <Ref id="Server" />
        </Arg>
        <Set name="workerName">
            <SystemProperty
name="jetty.node" default="node1" />
        </Set>
    </New>
    <Call name="setAttribute">
        <Arg>tcIdManager</Arg>
        <Arg>
            <Ref id="tcIdManager" />
        </Arg>
    </Call>
</Configure>

The TerracottaSessionIdManager is stored as an attribute on the Server instance for later retrieval under the name 
.tcIdManager

The  is a unique name for the Jetty node. In the example above it is "node1" but you can use anyworkerName

naming scheme you'd like. This is useful when hardware components such as load balancers can "stick" the
requests to the same node to improve performances by limiting the session migrations among nodes.

The TerracottaSessionManager

Each web application whose sessions you want to cluster must use a TerracottaSessionManager instead of the
default HashSessionManager.
The easiest way to do this is to create individual  config files for each web application, and includecontext deployer
these lines:



<Configure
class="org.mortbay.jetty.webapp.WebAppContex
t">
    ...
    <Property name="Server" id="Server">
        <Call id="tcIdManager"
name="getAttribute">
            <Arg>tcIdManager</Arg>
        </Call>
    </Property>
    <Set name="sessionHandler">
        <New
class="org.mortbay.terracotta.servlet.Terrac
ottaSessionHandler">
            <Arg>
                <New
class="org.mortbay.terracotta.servlet.Terrac
ottaSessionManager">
                    <Set name="idManager">
                        <Ref
id="tcIdManager" />
                    </Set>
                </New>
            </Arg>
        </New>
    </Set>
    ...
</Configure>

These lines ensure that a TerracottaSessionManager is established for each web application, and has access to the



Jetty instance's unique TerracottaSessionIdManager we configured above.

Terracotta Configuration File

You need one Terracotta configuration file for each Jetty instance.
In the Terracotta configuration file, part of the configuration is needed to setup correctly the Jetty-Terracotta
integration, and the rest of the configuration is needed to setup the Terracotta server and the web applications.

The base Terracotta Configuration File

The base Terracotta configuration file that sets up the Jetty-Terracotta integration is the following:

<?xml version="1.0" encoding="UTF-8"?>
<tc:tc-config
xmlns:tc="http://www.terracotta.org/config"
             
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
             
xsi:schemaLocation="http://www.terracotta.or
g/config
http://www.terracotta.org/schema/terracotta-
4.xsd">
    <servers>
        <server host="localhost">
           
<data>%(user.dir)/terracotta/server-data</da
ta>
           
<logs>%(user.dir)/terracotta/server-logs</lo
gs>
        </server>
    </servers>

    <clients>



        <modules>
            <module name="tim-jetty-6.1"
version="1.0.1" />
        </modules>
       
<logs>%(user.dir)/terracotta/client-logs</lo
gs>
    </clients>

    <application>
        <dso>
            <instrumented-classes>
                <include>
                   
<class-expression>...</class-expression>
                </include>
            </instrumented-classes>



1.  

2.  

3.  

        </dso>
    </application>
</tc:tc-config>

You can create a Terracotta configuration file wherever you prefer in the file system. The file will be referenced by
path in a system property to be passed on the command line (see below).
Copy and paste the example file content above into, for example, .$JETTY_HOME/tc-config.xml

Modifications to the Terracotta Configuration File

There are few places that needs to be modified in order for the Terracotta configuration file to correctly cluster your
web application.

Modify the location of the Terracotta server.
The server element has the  attribute that needs to be modified to point to the host name or hosthost

address of the Terracotta server. In most simple configurations this can be the local host, but in more
advanced configurations the Terracotta server is deployed in a separate host.
Instrumented classes includes
If you web application puts in the HTTP session only instances of JDK available classes (such as java.lan

 or ), then you do not need the instrumented-classes element.g.Integer java.lang.String

In case your web application puts in the HTTP session instances of classes belonging to the web application
(such as a domain  class), then you need to specify also those classes ascom.acme.domain.User

instrumented, for example:

<tc:tc-config ...>
    ...
    <application>
        <dso>
            <instrumented-classes>
                <include>
                   
<class-expression>com.acme.domain.User</class-expression>
                </include>
            </instrumented-classes>
        </dso>
    </application>
    ...
</tc:tc-config>

You can also specify class expressions to match multiple classes, as specified .here
Web application contexts
You do not need to specify the context path at which the web application is configured, by defining the web-a

 elements in the Terracotta configuration file, since the intention of clustering a context ispplication

already specified in the Jetty context configuration file.

Starting Terracotta and Jetty

The final steps require to start the Terracotta server and the Jetty servers.

http://www.terracotta.org/confluence/display/docs1/Configuration+Guide+and+Reference


1.  

2.  

Start the Terracotta server (in one console)

$ cd $TC_HOME/bin/
$ ./start-tc-server.sh

Start the Jetty instance (in another console)

$ cd $JETTY_HOME/
$ $TC_HOME/bin/dso-java.sh -Dtc.config=tc-config.xml -jar start.jar
etc/jetty.xml etc/jetty-terracotta.xml

The command line above assumes that the Terracotta configuration file has been saved to $JETTY_HOME/t
, and that the Jetty configuration file  is in its usual location under c-config.xml jetty-terracotta.xml

.$JETTY_HOME/etc/

Repeat this step for all Jetty nodes and you are done.

Do not forget to change the  of the TerracottaSessionIdManager in each node you deploy (this is toworkerName

help other hardware devices such as load balancers).

You can inspect that the clustering is working by starting the Terracotta administration console:

$ cd $TC_HOME/bin
$ ./admin.sh

You should see one root named "sessionIds" and 2 roots for each web application named
"sessionData:<context>:<vhost>" and "sessionExpirations:<context>:<vhost>".


	Session Clustering with Terracotta

