
Dataflow
Dataflow concurrency offers an alternative concurrency model, which is inherently safe and robust.

Introduction

Check out the small example written in Groovy using GPars, which sums results of calculations performed by three
concurrently run tasks:

import static
groovyx.gpars.dataflow.Dataflow.task
final def x = new DataflowVariable()
final def y = new DataflowVariable()
final def z = new DataflowVariable()

task {
 z << x.val + y.val
 println "Result: ${z.val}"
}

task {
 x << 10
}

task {
 y << 5
}

We start three logical tasks, which can run in parallel and perform their particular activities. The tasks need to
exchange data and they do so using . Think of Dataflow Variables as one-shot channels safelyDataflow Variables
and reliably tranferring data from producers to their consumers.

The Dataflow Variables have a pretty straightforward semantics. When a task needs to read a value from DataflowV
(through the val property), it will block until the value has been set by another taks or thread (using the '<<'ariable

operator). Each can be set in its lifetime. Notice that you don't have to bother withDataflowVariable only once

ordering and synchronizing the tasks or threads and their access to shared variables. The values are magically
transferred among tasks at the right time without your intervention. The data flow seamlessly among tasks / threads
without your intervention or care.

Implementation detail: The three tasks in the example do not necessarily need to be mapped to three physical
. Tasks represent so-called "green" or "logical" threads and can be mapped under the covers to any numberthreads

of physical threads. The actual mapping depends on the scheduler, but the outcome of dataflow algorithms doesn't
depend on the actual scheduling.

Benefits

Here's what you gain by using Dataflow Concurrency (by Jonas Bonér):http://www.jonasboner.com

No race-conditions
No live-locks
Deterministic deadlocks
Completely deterministic programs
BEAUTIFUL code.

This doesn't sound bad, does it?

If you'd like to know more on this interesting concept, check out .the Dataflow concurrency section of the User Guide

Further reading

http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src Scala Dataflow
library by Jonas Bonér

http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html JVM concurrency presentation slides by Jonas
Bonér

http://github.com/larrytheliquid/dataflow/tree/master Dataflow Concurrency library for Ruby

http://www.jonasboner.com
http://gpars.org/1.0.0/guide/guide/dataflow.html
http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src Scala Dataflow library by Jonas Bon�r
http://github.com/jboner/scala-dataflow/tree/f9a38992f5abed4df0b12f6a5293f703aa04dc33/src Scala Dataflow library by Jonas Bon�r
http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html JVM concurrency presentation slides by Jonas Bon�r
http://jonasboner.com/talks/state_youre_doing_it_wrong/html/all.html JVM concurrency presentation slides by Jonas Bon�r
http://github.com/larrytheliquid/dataflow/tree/master Dataflow Concurrency library for Ruby

	Dataflow

