
Technical Debt
The computation of technical debt is based on the (Software Quality Assessment based on Lifecycle Expectations) methodology.SQALE

SQALE is a methodology that was developed by and then open sourced. If you read the documentation at , you'll see that it'sinspearit sqale.org
about " ." In the SonarQube implementation of the SQALE method,organising the non-functional requirements that relate to the code’s quality
those non-functional requirements are the coding rules in your quality profile

Yes, the SonarQube implementation of SQALE is based solely on rules and . That means that if you want to manage all your technical debtissues
with SQALE, you'll first need to enable the rules in the Common SonarQube repository that flag:

Duplicated blocks
Failed unit tests
Insufficient branch coverage by unit tests
Insufficient comment density
Insufficient line coverage by unit tests
Skipped unit tests

Those rules are in the Common SonarQube repository because they're common to all languages. Once you've got them enabled, you can track
every quality flaw as an issue, and you're ready to track technical debt, which the SQALE method measures in days.

Those day measurements are made by summing the technical debt accrued for each issue, which you can see in the issue block:

The technical debt for each issue is set at the rule level. If you've got the , you can adjust the estimate for each rule (incommercial SQALE plugin
doing so, you’re editing the SQALE Analysis Model – the remediation cost of each rule). But those estimates were made by seasoned
professionals, so you probably won't need to.

So now you know how long it will take to fix the application, but how do you prioritize the work? There's a widget for that. It’s called the technical
debt pyramid, and it looks like no pyramid you’ve ever seen before:

http://www.sqale.org/
http://www.inspearit.com
http://sqale.org
http://www.sqale.org/details
http://docs.codehaus.org/display/SONAR/Quality+Profiles
http://docs.codehaus.org/display/SONAR/Issues
http://www.sonarsource.com/products/plugins/governance/sqale/

Don't be confused by the fact that this doesn't look like something from ancient Egypt; this is a figurative pyramid. The way to read it is from the
bottom up. The bottom row will always have the smallest bar in the bar graph, but it has the biggest import – because it’s foundational. The rows
in this widget each represent a “characteristic” and each characteristic builds on the ones below it. Testability is at the bottom because it’s most
important: first you make sure your app is testable, then you make sure it’s reliable, then changeable, and efficient, and so on.

The bars in the graph show remediation time per characteristic. The light blue portion shows the time to clean up characteristic, and the darkthis
blue portion shows cumulative time, working from the bottom up. As usual, each portion of the widget clicks through to a drilldown to let you see
exactly where the technical debt for a characteristic is.

Going Further
The plugin extends the technical debt feature embedded in SonarQube. Among other features, it allows to tune the SQALESonarSource SQALE
model (adjust the remediation estimates for each rule, set the list and order of characteristics, change which characteristic a rule falls under, and
more), provides additional widgets, etc.

http://www.sonarsource.com/products/plugins/governance/sqale/

	Technical Debt

