Support GetGMLObject

Motivation: Support GetGMLObject operation of WFS 1.1
Contact: Justin Deoliveira

Tracker: http://jira.codehaus.org/browse/GEOT-XXXX
Tagline:

This page represents the current plan; for discussion please check the tracker link above.

Status

This proposal is closed and has been implemented.

Voting has not started yet:

Vote Alternative 1 Alternative 2
Andrea Aime
lan Turton
Justin Deoliveira +1 o
Jody Garnett +1 o
Martin

Desruisseaux

Simone
Giannecchini

dynamictasklist: task list macros declared inside wiki-markup macros are not supported

Description

WFS 1.1 comes with the addition of a new operation called GetGmIObject. This is relatively simple in nature. Given the identifier of a "GML

object" (be it a Feature or a Geometry) return that object.

The following is an example of a GetGmIObject request in which an individual feature with the id "PrimitiveGeoFeature.1" is being requested:

<wf s: Get Gl Obj ect xm ns: wfs="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"

version="1.1.0" service="WS">

<ogc: GM bj ect I d>Printi veGeoFeat ure. 1</ ogc: Grl Obj ect | d>
</ wfs: Get Gl (bj ect >

The response to this request is the feature encoded in gml:

http://docs.codehaus.org/display/~jdeolive
http://jira.codehaus.org/browse/GEOT-XXXX
http://docs.codehaus.org/display/~aaime
http://docs.codehaus.org/display/~ianturton
http://docs.codehaus.org/display/~jdeolive
http://docs.codehaus.org/display/~jive
http://docs.codehaus.org/display/~desruisseaux
http://docs.codehaus.org/display/~desruisseaux
http://docs.codehaus.org/display/~simboss
http://docs.codehaus.org/display/~simboss

<sf:PrimtiveGeoFeature xm ns:sf="http://cite.opengeossptial.org/gm sf"
xm ns: gm ="http://ww. opengi s.net/gm " gm:id="PrimtiveGeoFeature.1">
<gm : name>nane- 01</ gm : name>
<gm : descri ption>descri pti on-01</ descri pti on>
<sf: poi nt Property>
<gm : Poi nt xm ns:gm ="http://ww. opengis.net/gm" gm:id="point.1">
<gml : pos>12 34</gnl : pos>
</ gm : Poi nt >
</ sf: poi nt Property>
<sf:intProperty>1</sf:intProperty>

</sf:PrimtiveCeoFeature>

The GetGmIObject operation can also be used to retreive individual geometries. The following is an example in which an individual point with the
id "point.1" is being requested:

<wf s: Get Gl Obj ect xm ns: wfs="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"

version="1.1.0" service="WS">

<ogc: Gm bj ect | d>poi nt. 1</ ogc: G Obj ect | d>
</ wfs: Get Gl Obj ect >

The response is the point encoded in gml:

<gm : Point xm ns:gm ="http://ww. opengi s.net/gm" gnm:id="point.1">
<gml : pos>12 34</gnl : pos>
</ gm : Poi nt >

Providing support in Geotools for this operation is broken out into two alternatives which will be explained in greater detail in the following
sections. The first alternative requires a DataStore api extension which will provide additional datastore api for querying specifically for an object.
The second alternative requires is implemented entirely with existing api and hints.

Proposal

Alternative 1. Extending the DataStore API

As stated above, the first alternative is centered around an extension to the DataStore api. An additional interface called Grl Obj ect St or e is
added:

/**

* Interface providing | ookup operations for gm objects.

* <p>

* This interface nmay be inplenented by data stores to provide an additional operation

* for |ooking object a "gml object" directly. A gm object is typically a feature
* or a geonetry.

* </ p>

*/

public interface Grl ObjectStore {

* Looks up an object by its gnl id.

* <p>

* This method returns <code>nul |l </code> if no such object exists.
* </ p>

* @aramid The id of the object, nmust not be <code>nul | </ code>.
* @aramhints Hnts to use while querying

* @eturn The gm object, or <code>null</code> if one could not be found
* matching the specified id.

* @hrows | OException Any I/O errors that occur.
*/
Ohj ect getGrl Object(G Objectld it, Hints hints) throws | OException;

The interface adds a single method which takes a Grl Obj ect | d (from the filter model), and produces an object. The object being a Feat ur e, or
aGeonetry.

The idea is that a DataStore which is capable of providing these lookup operations can implement this additional interface. A client wishing to use
this functionality must do an instanceof check against the interface.

As an example consider the implementation of the GetGmIObject operation in GEoServer:

class Get Grl Obj ect {

Obj ect run(Get Grl Ooj ect Type request) {

/11 ook up the datastore
Dat aStore dataStore = findDataStore(request);

if (dataStore instanceof Gm ObjectAware) {
Gl Obj ect Awar e gm Cbj ect Awar eDat aSt ore = (Gl Obj ect Awar e) dat aSt or e;

//get the id fromthe request
Grl bjectld id = request.get Grl Obj ectld();

/1 get the object
return gm Obj ect Awar eDat aSt ore. get Gl Gbject(id);

}
el se {
//data store does not support hte operation
t hrow new WFSException("DataStore: " + dataStore + " does not support
Get Gl Qbj ect”);
}

}
}

Alternative 2: Hints

An alternative to extending the datastore api is to use a combination of the old api and the hint system. A hint called "GML_OBJECT _ID" is
added:

class Hints {

* The gml id of an object in a datastore query.
* <p>

* This maps directly to a Gri Objectld elenent in a wis query.

* </ p>

*/

public static final H nts.Key GVW_OBJECT_ID = new Key(Gm Cbjectld.class);

A client must supply this hint to a data store via a Quer y object. Again consider the implementation of the GetGmIObject operation in GeoServer:

class Get Grl Obj ect {

Obj ect run(Get Grl Ooj ect Type request) {

/11 ook up the datastore
Dat aStore dataStore = findDataStore(request);

//build a query
Query query = new Defaul t Query();

//set the gm bjectld hint
Grl ojectld id = request.get Grl Obj ectld();
query.getH nts().put(Hints.GW_OBJECT_ID, id);

At this point it is up to the particular data store implementation to honor the hint passed in. Now this is where things get a big fuzzy. In the case
where a particular Feature is being requested the answer is simple. Just return a single feature:

|l execute the query
Feat ur eReader reader = dataStore. get FeatureReader(query, Transacti on. AUTO COWM T);
try {
if (reader.hasNext()) {
/lreturn the feature
return reader.next();
}
el se {
t hrow new WFSException("No such object found for id: " +id);
}

}
finally {
reader . cl ose();

}

However, what about the case where a particular Geometry is being requested? The existing data store api limits us to returning features. So for
this case we must wrap the geometry in a feature.

/I execute the query
Feat ur eReader reader = dataStore. get FeatureReader(query, Transacti on. AUTO COWM T);

try {
if (reader.hasNext()) {

/lread the feature
Si npl eFeature feature = reader. next();

//return the geonetry
return feature. get Defaul t Geonetry();

}

el se {
t hrow new WFSException("No such object found for id: " +id);
}

}
finally {

reader. cl ose();

}

It gets a bit more complicated in that the client code must know which type of object corresponds to the requested id, since it needs to know if it
should unwrap the feature or not. A possible solution to this is to use "user data" for the data store to report back the type of the object:

/I execute the query

Feat ur eReader reader = dataStore. get FeatureReader(query, Transaction. AUTO COWM T);
try {
if (reader.hasNext()) {
/lread the feature
Si npl eFeature feature = reader.next();

/I check the gm object type
String type = feature.getUserData().get("gml ObjectType");
if ("Geonetry".equals(type)) {
/[unwr ap
return feature. get Def aul t Geonetry();
}

//return the feature itself
return feature;

}
el se {
t hrow new WFSException("No such object found for id: " +id);
}
}
finally {
reader . cl ose();

}

API Changes

Alternative 1

Addition of the Grl Obj ect Awar e interface above.

Alternative 2

Addition of the GML_OBJECT_| D hint.

	Support GetGMLObject

