
tapestry-routing guide

Overview
Inspired by , and , allows you to provide your own custom mapping between Tapestry 5 pagessitebricks resteasy rails routing tapestry-routing
and URLs.

Usage
First (as always), add the dependency to your pom.xmltapestry-routing

<dependency>
 <groupId>org.tynamo</groupId>
 <artifactId>tapestry-routing</artifactId>
 <version>0.0.7</version>
</dependency>

Then annotate your pages with the annotations (annotations are still supported and work the same way)@Route @At

eg:

Let's say you have a page: pages.projects.Members which have 2 parameters in its activation context: and you(Long projectId, Long memberId)
want the URL for that page to look like /projects/1/members/1

Just add the annotation to you page, like this:@Route

package ...pages.projects;
@Route(" /projects/{0}/members/{1}")
public class Members {
void onActivate(Long projectId, Long memberId)

That's it!
The will take care of recognizing incoming requests and dispatching the proper render request and the RouterDispatcher RouterLinkTransformer
will do the rest of the work, it will transform every for a page render request formatting it according to your route rule.Link

CRUD and REST-like URLs
Here is an example of how is using :tapestry-model tapestry-routing

path page used for

/recipe
@At("/{0}") public
class List

display a list of all recipies

Version status: 0.0.7 beta
0.0.6 added support live reloading of routes and support for contributing routes from different sources.

The is after the in the chain so Tapestry pages that matches the incoming request will always takeRouterDispatcher PageRender
precedence over the route rule.

http://code.google.com/p/google-sitebricks/
http://www.jboss.org/resteasy
http://guides.rubyonrails.org/routing.html

/recipe/new
@At("/{0}/new")
public class Add

return an HTML form for creating a new
recipe

/recipe/{id}
@At("/{0}/{1}")
public class Show

display a specific recipe

/recipe/ /edit{id}
@At("/{0}/{1}/edit")
public class Edit

return an HTML form for editing a recipe

Index Pages

The only caveat with the current implementation is that you can't use Index pages. I mean pages named "*Index"
The way Tapestry handles *Index pages prevents the module from working properly.
My workaround (for now) is:

@Route("/") public class Home

Contributing Routes
If you like to have all your routes configuration centralized, you don't need to use the annotation if you don't want to. You can contribute@Route
the routes to the RouteProvider.

@Primary @Contribute(RouteProvider.class)
public static void addRoutes(OrderedConfiguration<Route> configuration, RouteFactory
routeFactory) {
 String canonicalized = "subpackage/UnannotatedPage";
 configuration.add(canonicalized.toLowerCase(),
routeFactory.create("/not/annotated/{0}", canonicalized));
}

Avoid scanning ALL the pages.
If you want to prevent tapestry-routing from scanning all the pages packages looking for the annotation set the @Route DISABLE_AUTODISCO

 symbol to " ". If you do this then you can either contribute your routes directly to the or tell the VERY true RouteProvider, AnnotatedPagesManager
explicitly which pages do you want to be scanned.

You can't have pages named *Index

If this "no Index pages" restriction is annoying you and you feel adventurous enough you can try this little module https://gist.github.com
 that allows you to have Index pages as long as they have always an empty activation context. /3360101

https://gist.github.com/3360101
https://gist.github.com/3360101

@Contribute(SymbolProvider.class)
@ApplicationDefaults
public static void provideApplicationDefaults(MappedConfiguration<String, Object>
configuration) {
 configuration.add(RoutingSymbols.DISABLE_AUTODISCOVERY, true);
}
@Contribute(AnnotatedPagesManager.class)
public static void annotatedPagesManager(Configuration<Class> configuration) {
 configuration.add(SimplePage.class);
}

	tapestry-routing guide

