
GFS Example for Grails 1.1

Table of Contents
Introduction

Domain Model
Scaffolding

Grails Project Creation
Plugin installation
Generating domain class model
Let's edit generated domain classes

Company
Customer
Address
Phone

CRUD Company and Customer Generation
Flex compilation
It's time to start up our app-server and navigate our application

Success tips (Important information)
Relations
Constraints

Import into Eclipse

Introduction
In order to explain how this plugin works we are going to write some code for a dummy example app which contains three type of relations
(one-to-many, many-to-one and one-to-one) between four domain classes.

Resources

GFSv0.1.1 plugin
GFSv0.1.1 example application
GFS screencast example

Prerequisites

Grails-1.1
Adobe Flex 3.0.0 or major

FLEX_HOME and GRAIL_HOME must be defined as enviroment variable!!

Domain Model

http://plugins.grails.org/grails-flex-scaffold/tags/RELEASE_0_1_1/grails-flex-scaffold-0.1.1.zip
http://dist.codehaus.org/gfs/GFSv0.1.1/gfs-test.zip
http://dist.codehaus.org/gfs/GFSv0.1/gfs-screencast.mov

Scaffolding

Grails Project Creation

user@cubikalabs:~$ grails create-app gsf-test

Plugin installation

user@cubikalabs:~$ cd gfs-test
user@cubikalabs:~/gfs-test$ grails install-plugin flex-scaffold
user@cubikalabs:~/gfs-test$ grails compile #After installing Grails doesn't compile
it.

Generating domain class model

user@cubikalabs:~/gfs-test$ grails create-domain-class customer
user@cubikalabs:~/gfs-test$ grails create-domain-class company
user@cubikalabs:~/gfs-test$ grails create-domain-class phone
user@cubikalabs:~/gfs-test$ grails create-domain-class address

Let's edit generated domain classes

Company

importorg.cubika.labs.scaffolding.annotation.FlexScaffoldProperty
//@FlexScaffoldProperty(labelField="name") is
//The label field is displayed in edit-view
//of the relation external
@FlexScaffoldProperty(labelField="name")
class Company
{
 String name
 String address
 //One-to-Many
 static hasMany = [customers:Customer]

 static mapping =
 {
 customers lazy:false, cascade:"none"
 }

 static constraints =
 {
 name(blank:false)
 address(blank:false)
 customers(display:false)//Not view customer in Company's edit-view
 }

}

Customer

class Customer
{
 String firstName
 String lastName
 String email
 Date dateOfBirth
 Phone phone
 List addresses
 Company company
 String maritalStatus
 Integer age
 Boolean enabled

 static hasMany = [addresses:Address]
 static belongsTo = Company

 static mapping =
 {
 addresses lazy:false, cascade:"all-delete-orphan"
 company lazy:false, cascade:"none"
 }

 static constraints =
 {
 firstName(minSize:2, blank:false)
 lastName(maxSize:20)
 dateOfBirth()
 age(range:18..99)
 email(email:true, blank:false)
 //if not declared widget, the default component is a ComboBox

maritalStatus(inList:["Single","Married","Divorce","Widower"],widget:"autocomplete")
 addresses()
 //if inPlace:false, a ComboBox is created in the "edit-view"
 //of the class containing it, and it's filled with the information that makes a
 // reference of it.
 //Besides, it allows to create a new record from the edit-view of the referenced
class
 //through a button ("add")
 //by default inPlace is true
 company(inPlace:false, nullable:true)
 //The componente will be hidden when the form is setted CREATE_VIEW mode
 //and sets the defaultValue, in this case the value is true
 //If you wish, use the metaConstraint editView:false to hide component in
EDIT_VIEW mode
 enabled(createView:false,defaultValue:'true')
 }
}

Address

class Address
{
 String street
 Integer number
 String zip
 String observation
 Customer customer

 static constraints =
 {
 street(blank:false)
 //if not declared widget, the default
 //component is a NumericStepper
 number(widget:"textinput")
 zip(blank:false)
 observation(widget:"textarea")
 //Not view customer in Address' edit-view
 customer(display:false)
 }
}

Phone

class Phone
{
 String number
 String type

 static belongsTo = Customer
 static constraints =
 {
 //if not declared widget, the default
 //component is a NumericStepper
 number(widget:"textinput")
 type(inList:["Home","Movil"])
 }
}

CRUD Company and Customer Generation

user@cubikalabs:~/gfs-test$ grails generate-all-flex company
user@cubikalabs:~/gfs-test$ grails generate-all-flex customer

Flex compilation

user@cubikalabs:~/gfs-test$ grails flex-tasks

It's time to start up our app-server and navigate our application

user@cubikalabs:~/gfs-text$ grails run-app

open browser and go to http://localhost:8080/gfs-test

Success tips (Important information)

Relations

many-to-one supports only inPlace:false (this declaration is not required because it's setted as a default)
one-to-many both cases are supported inPlace:false/inPlace:true.
one-to-one supports only inPlace:true (this declaration is not required because it's setted as a default).
If relations are declared as inPlace:true, e.g: Customer <-> Address o Customer -> Phone, the included class (Address, Phone) must
define the constraint diplay:false for property that is including "custormer(display:false)". At this moment, this restriction is not valid in
generation code time and ends by abort process
Relations must ever be lazy:false if not, BlazeDS throws a LazyInitialization exception (in future versions we are going to support this
feature with DPHibernate or similar).

Constraints

Front-End supported constraints
blank, email, size, minSize, maxSize, min, max, range, url, inList
For each Front-End constraint, a Flex validator is generated. This avoids user to persist the entity without the need of Back-End
validation.

All other constraints (Grails constraints) follows Grails validation way, doing validation on Back-End side which have the responsibility of
getting feedback about errors to Front-End. This kind of errors are supported by i18n.

Import into Eclipse
If you want to know how to import a project into FlexBuilder see: How-To import project into eclipse

http://localhost:8080/gfs-test
http://docs.codehaus.org/display/GFS/howto+import+project+into+eclipse

	GFS Example for Grails 1.1

