
1.
2.

Focus FeatureSource around FeatureReader and
FeatureWriter
Motivation: The current api is a mess

Contact: Justin Deoliveira

Tracker: for GeoTools 2.5.x taskshttp://jira.codehaus.org/browse/GEOT-1922

Tagline: Cleaning up data store / feature access api

This page represents the plan; for discussion please check the tracker link above.current
Description

The Problem
API Confusion
Duplication
Implementation Complexity

The Solution
Status

Tasks
Children:

Description

The Problem

Currently our data access api presents two ways to access data:

query-based reader/writer access
operation-based collection access

While providing two modes of data access does have some advantages in terms of flexibility it has some major problems:

API Confusion

Having two apis for accessing data makes it harder to approach for users. Either method does not present any decisive advantage over the other.
Its just "more than one way to do it" (to coin a phrase from perl), which has led to more headache than benefit.

Duplication

FeatureCollection duplicates much of what was originally created in / . The biggest violation beingFeatureReader FeatureWriter
iterators. Not only does provide a duplication of in the form of from java collections, it goesFeatureCollection FeatureReader Iterator
beyond and defines the method which returns a , which is literally a one-to-one duplication of features() FeatureIterator FeatureReader
.

One of the biggest problems of this duplication has been with resect to . Each time a decorator is implemented, it is implemented up todecorators
3 times. To add to the mess a set of have been created to go back and forth between the 3 types of iterator. The following diagramadapters
illustrates:

http://docs.codehaus.org/display/~jdeolive
http://jira.codehaus.org/browse/GEOT-1922

Implementation Complexity

Having two data access apis to implement makes it very hard to create a clean datastore, which ultimately leads to a high cost of maintainence.
This had led to a mass of unsupported format drivers in Geotools. With a better organization and internal api for implementing datastores, many of
these drivers could be saved.

Data store implementors having to implement is something that has been a disaster. The following diagram illustrates:FeatureCollection

The Solution

The approach presented in this proposal is two fold:

focus the / api around and DataStore FeatureSource FeatureReader FeatureWriter
make a convenience wrapper around /FeatureCollection DataStore FeatureSource

The benefits of this are:

100% backwards compatable
Implementors can ignore and implement the simpler / apiFeatureCollection FeatureReader FeatureWriter
FeatureCollection gets implemented and all duplication is removedonce

The modifications to the current datastore api are strictly additions. Consider the following:

interface DataStore2 extends DataStore {
 FeatureSource getFeatureSource(String typeName, Transaction tx);
 FeatureSource getFeatureSource(Name typeName, Transaction tx);
}

interface FeatureSource2 extends FeatureSource {

 /** get a reader over the entire set of features */
 FeatureReader getReader();

 /** get a reader over a subset of features */
 FeatureReader getReader(Filter filter);
 FeatureReader getReader(Query query);

}

interface FeatureStore2 extends FeatureStore {

 /** get an inserting + updating writer over the entire set of features */
 FeatureWriter getWriter();

 /** get an inserting + updating writer over a subset set of features */
 FeatureWriter getWriter(Filter filter);
 FeatureWriter getWriter(Query query);

 /** get an updating writer */
 FeatureWriter getWriterUpdate();
 FeatureWriter getWriterUpdate(Filter filter);
 FeatureWriter getWriterUpdate(Query query);

 /** get an inserting writer */
 FeatureWriter getWriterInsert();

}

As for , with this additional api it is possible to create a single implementation which delegates to the and FeatureCollection DataStore Fea
 api. Such an implementation can be found .tureSource here

The class is an experimental abstract datastore implementation which is based on the api changes presented in thisContentDataStore
proposal. It is the base of the new jdbc datastore which has been used in GeoServer and is fully cite compliant (so we know it works).

Status

This proposal is under construction.

Voting has not started yet:

Andrea Aime
Ian Turton
Justin Deoliveira
Jody Garnett
Martin Desruisseaux
Simone Giannecchini

http://svn.geotools.org/geotools/trunk/gt/modules/library/data/src/main/java/org/geotools/data/store/ContentFeatureCollection.java
http://docs.codehaus.org/display/~aaime
http://docs.codehaus.org/display/~ianturton
http://docs.codehaus.org/display/~jdeolive
http://docs.codehaus.org/display/~jive
http://docs.codehaus.org/display/~desruisseaux
http://docs.codehaus.org/display/~simboss

Tasks

 no
progress

done impeded lack
mandate/fu
nds/time

volunteer
needed

GeoTools 2.5

 feature collection is no longer a Java Collection

 http://jira.codehaus.org/browse/GEOT-1922

GeoTools 2.7.x

Review the FeatureCollection implementation in H2 datastore that completly delegates to FeatureSource
Copy the FeatureSource implementation from H2 into data store modules one at a time

http://jira.codehaus.org/browse/GEOT-1922

	Focus FeatureSource around FeatureReader and FeatureWriter

