Focus FeatureSource around FeatureReader and
FeatureWriter

Motivation: The current api is a mess

Contact: Justin Deoliveira

Tracker: http://jira.codehaus.org/browse/GEOT-1922 for GeoTools 2.5.x tasks
Tagline: Cleaning up data store / feature access api

This page represents the current plan; for discussion please check the tracker link above.
® Description
® The Problem
® API Confusion
® Duplication
® Implementation Complexity
® The Solution
® Status
® Tasks
Children:

Description

The Problem

Currently our data access api presents two ways to access data:

1. query-based reader/writer access
2. operation-based collection access

While providing two modes of data access does have some advantages in terms of flexibility it has some major problems:

API Confusion

Having two apis for accessing data makes it harder to approach for users. Either method does not present any decisive advantage over the other.
Its just "more than one way to do it" (to coin a phrase from perl), which has led to more headache than benefit.

Duplication

Feat ur eCol | ect i on duplicates much of what was originally created in Feat ur eReader /Feat ur eW i t er . The biggest violation being
iterators. Not only does Feat ur eCol | ect i on provide a duplication of Feat ur eReader in the form of | t er at or from java collections, it goes
beyond and defines the f eat ur es() method which returns a Feat ur el t er at or, which is literally a one-to-one duplication of Feat ur eReader

One of the biggest problems of this duplication has been with resect to decorators. Each time a decorator is implemented, it is implemented up to
3 times. To add to the mess a set of adapters have been created to go back and forth between the 3 types of iterator. The following diagram
illustrates:

http://docs.codehaus.org/display/~jdeolive
http://jira.codehaus.org/browse/GEOT-1922

<< Java Class>s

elmaCime> - <<laaClasz>> Featu! e
Featurelisratoriterator DelegatsFeaturslterator|
"u., - -
Fry— e — T, o EEEETe——
onggecincls featre | ‘o gecimols daia siore _ "‘F il FeatureiriterF eaturelterator
== JavaClmsss Nntumxmr
[FeatureReaderiterator NG Pe0N00HS. (KA. 5 lore
e Re-typin
g [l Re-typing
i =y e [Reprojecting
P e T —— [] Delegating
PP A A W NN (£ - []No Content

[|Feature Capping
[] Adapters

.umc;n,, =<z Classo= e lavaClames
ator Fllterediterator MaxFeaturesiterator
W'-*'h-ﬂlllﬂll 0 pececol 5. G 510 ongpeotocts featune. ol org. peoinals fata st

==l Clams=> << Jaa Clavws>> e Java Class>> Py —g—
- - | Eﬂ'mrﬂmul |FI-"."|F°"M H.-"d"
oy peciools daia

Implementation Complexity

Having two data access apis to implement makes it very hard to create a clean datastore, which ultimately leads to a high cost of maintainence.
This had led to a mass of unsupported format drivers in Geotools. With a better organization and internal api for implementing datastores, many of

these drivers could be saved.

Data store implementors having to implement Feat ur eCol | ect i on is something that has been a disaster. The following diagram illustrates:

AdaptorFeatureColfection

org.gaotaols faature.callac

<<lJava Class>

<< Java Interface>

ResourceCollection [=}—

org.geotools.data.collad]

AbstractFeatureCoffection

org.gectoola feature.collac

<<Java Class>

<<Java Class>

ReprojectFeatureResults

org.geotools.data.c

-

-

-
.

<< Java Interface>
FeatureCollection

org.gectools. featy

<<Java Interface~>

IndexedFeatureCollection
org.geotaols faaty

s

=<Java C-Ilass:\-
BaseFeatineColiection

org.gectools feature.colla)

<<Java Class™>

MemornyFeatureCollection

org.geotools.data.marnm

=<Java Class>

ForceCoordinateSystemFeatureResults

org.gactools.data.c

The Solution

n:-:Java'CIass:v
DataFeatureCollaction

org.geotools.data. st

<<lava Class>
GMLFeatureCollection

org.gectools.data.g

=<.Java Class>
JDBECFeatureCollection

org.geotools.data.jc

<<Jlava Class>
PostgisFeatureCollection

org.gectools.data.postgiz.collal

The approach presented in this proposal is two fold:

® focus the Dat aSt or e/Feat ur eSour ce api around Feat ur eReader and FeatureWiter
®* make Feat ur eCol | ecti on a convenience wrapper around Dat aSt or e/Feat ur eSour ce

The benefits of this are:

® 100% backwards compatable
® Implementors can ignore Feat ur eCol | ect i on and implement the simpler Feat ur eReader /Feat ureWi t er api

® Feat ureCol | ecti on gets implemented once and all duplication is removed

f/-/'i?

<<lJava Interface>

RandomFeatureAccess
org.geatools faatura.collac)

-

<<Jé\ra Class>
DefaultFeatureCollection

arg.geotocls featy

<< Java Class>
GMLFeatureCollection

org.gectocls.aml.g

<<lJava Class>
DefaultFeatureResults

org.geotaols.d:

<<lava Class>
IndexedFeatureResults
org.gectools.renderar.

=<.Jawa Class>
WFSFeatureResults

org.gectools.dataw

The modifications to the current datastore api are strictly additions. Consider the following:

interface DataStore2 extends DataStore {
Feat ur eSour ce get FeatureSource(String typeNanme, Transaction tx);
Feat ur eSour ce get Feat ureSource(Nanme typeNane, Transaction tx);

}

interface FeatureSource2 extends FeatureSource {

/** get a reader over the entire set of features */
Feat ur eReader get Reader();

/** get a reader over a subset of features */
Feat ur eReader getReader(Filter filter);
Feat ur eReader get Reader(Query query);

interface FeatureStore2 extends FeatureStore {

/** get an inserting + updating witer over the entire set of features */
FeatureWiter getWiter();

/** get an inserting + updating witer over a subset set of features */
FeatureWiter getWiter(Filter filter);
FeatureWiter getWiter(Query query);

/** get an updating witer */

FeatureWiter getWiterUpdate();

FeatureWiter getWiterUpdate(Filter filter);
FeatureWiter getWiterUpdate(Query query);

/** get an inserting witer */
FeatureWiter getWiterlnsert();

As for Feat ur eCol | ect i on, with this additional api it is possible to create a single implementation which delegates to the Dat aSt or e and Fea
t ur eSour ce api. Such an implementation can be found here.

The Cont ent Dat aSt or e class is an experimental abstract datastore implementation which is based on the api changes presented in this
proposal. It is the base of the new jdbc datastore which has been used in GeoServer and is fully cite compliant (so we know it works).

Status

This proposal is under construction.
Voting has not started yet:

Andrea Aime

lan Turton

Justin Deoliveira
Jody Garnett

Martin Desruisseaux
Simone Giannecchini

http://svn.geotools.org/geotools/trunk/gt/modules/library/data/src/main/java/org/geotools/data/store/ContentFeatureCollection.java
http://docs.codehaus.org/display/~aaime
http://docs.codehaus.org/display/~ianturton
http://docs.codehaus.org/display/~jdeolive
http://docs.codehaus.org/display/~jive
http://docs.codehaus.org/display/~desruisseaux
http://docs.codehaus.org/display/~simboss

Tasks

no [] done B impeded 1 lack
progress mandate/fu
nds/time

GeoTools 2.5

° o feature collection is no longer a Java Collection
° o http://jira.codehaus.org/browse/GEOT-1922

GeoTools 2.7.x

® Review the FeatureCollection implementation in H2 datastore that completly delegates to FeatureSource
® Copy the FeatureSource implementation from H2 into data store modules one at a time

i

volunteer
needed

http://jira.codehaus.org/browse/GEOT-1922

	Focus FeatureSource around FeatureReader and FeatureWriter

