
Developer Zone

Information for GPars developers

Build info
The continuous integration build can be found under:

Build Server Link Note

JetBrains TeamCity http://teamcity.jetbrains.com/project.html?projectId=project34 needs registration

Codehaus Bamboo http://bamboo.ci.codehaus.org/browse/GPARS-DEF

Issue Tracker
The JIRA issue tracker:http://jira.codehaus.org/browse/GPARS

Source Repository
The Git repository held at GitHub is the official mainline:

git://github.com/GPars/GPars.git

To work on the codebase please fork the repository on GitHub in the usual GitHub workflow way. Keeping the master branch as a mirror of the
mainline, working on a feature branch and then sending in pull requests based on that feature branch seems to be the best way of
working. Please refer to the Git and GitHub documentation for any further details on using Git and GitHub.

Mirror Repository
A repository that is a mirror of the GitHub repository is maintained at Codehaus in order to continue integration with various continuous integration
servers (over time more of this will migrate to GitHub). Also this Codehaus project remains the location of the issue tracker and is the route for
artefacts to get into the Maven repository.

You should never need to clone this repository, but for completeness, the command:

git clone git://git.codehaus.org/gpars.git GPars

creates a clone of the repository in the subdirectory GPars. The above URL gives read-only access to the repository. Those people with write
access to the repository should use the URL:

ssh://git@git.codehaus.org/gpars.git

Personal clones
Project commiters and contributors typically keep their personal clones of the main repository for feature branches:

Václav Pech

git://github.com/vaclav/GPars.git

http://teamcity.jetbrains.com/project.html?projectId=project34
http://bamboo.ci.codehaus.org/browse/GPARS-DEF
http://jira.codehaus.org/browse/GPARS

1.
2.
3.

4.

5.
6.

Russel Winder

git://github.com/russel/GPars.git

Building the project
The script will download and setup gradle for the project and execute the build.gradlew

gradlew clean build

IDE integration
Create an IDEA or Eclipse project files through or commands and you are ready to go.gradlew idea gradlew eclipse

IntelliJ IDEA

Upon start or right before building the project IDEA will prompt you for the JDK to use. Once you specify that on the project level, you should be
good to go.

The default IntelliJ IDEA project file

GPars holds a default IDEA project file in the root of the project and is named . This project serves as a master copy for theGPars_IDEAX.ipr
generated project files (see above) and also to configure our Continuous Integraion. If you for some reason decide to use the default project file,
you need to go through a few configuraion steps first.

The first time you open the project you will be prompted to enter a PROJECT_JDK_NAME and a variable. These areMAVEN_REPOSITORY
IDEA variables and not system variables. The result is stored in your home directory.
Each developer can have a unique value. For example, your may be a path on your disk, and caMAVEN_REPOSITORY PROJECT_JDK_NAME
n be any string value, e.g. "1.6". This is the name of the Global JDK defined defined within IDEA. You can setup a global JDK in IDEA under
File->Project Structure->SDKs. There is a little text box to fill in where you give the JDK a name. Whatever you typed into this textbox needs is
what needs to be typed into the IDEA Environment Variable screen for PROJECT_JDK_NAME.

The variable should point to your local maven repository, which IDEA will be using to keep downloadable artifacts ofMAVEN_REPOSITORY
third-party libraries that are needed to build and run . You need to populate the repo first for IDEA to find the necessary artifacts. The bestGPars
way to do so is to open the file (provided Maven support is enabled in your IDEA installation) and ask IDEA to /java-demo/pom.xml Import change
. Alternatively you can use the button in the Maven tool window.s Refresh

Future IDEA environment variables can be declared within the .ipr and .iml with the syntax VAR_NAME. Anything undefined at project startup
will prompt the user for entry.

Code style
If you plan to contribute code to the project, please check out our brief to make sure your contribution fits seamlessly with thecode style guide
rest of the code base.

VCS workflow
People clone the main GitHub repository
People create feature branches in their personal cloned repository
People publish their work to possibly cooperate with others on the feature and when ready for review announce the branch asking for
people to review. ()git push [mirrorRepo] myFeature
People reviewing the feature branch fetch the changesets from the public mirror and review running tests ([git remote add mirrorRepo

) mirrorRepoUrl;] git fetch [mirrorRepo] myFeature
If there are no worries about the proposed changes then people say so, where there are issues start a debate on the email list.
When changes have been reviewed and agreed, one of the committing authors is agreed to merge the branch into their master and
pushes to the GitHub main repository (and their public mirror repository of course) (git checkout master;git pull; git merge --no-ff

)myFeature;git push

Notice the flag when merging.--no-ff
Note that this workflow is applicable to all people whether they are committing authors or not. It's just that non-committing authors have to

http://docs.codehaus.org/display/GPARS/Code+Style

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

convince a committing author to do the commit. A consequence is that people should not be advised to submit patches on JIRA issues, but
instead to specify where their feature branch is so it can be pulled. Obviously patches work as well but the whole point is for everyone to publish
their feature branches so others can review them in a VCS context.

Simplified workflow

Trivial spelling error fixes, extra tests that don't necessitate a change of code but just extend the test coverage, and very simple
(non-controversial) bug fixes with their tests are currently exempt from having a review process. Discretion on the part of committing developers is
required here. () or (git pull; fix; commit; git push git pull; git checkout -b myFix; fix; commit; git checkout master; git pull; git merge --no-ff myFix;git

)push

Upgrading Gradle
Install Gradle from an up to date Gradle Trunk.
Edit the build.gradle file to change the number of the wrapper to the new one.
Run "gradle wrapper"
If the wrapper is a snapshot the edit wrapper/gradle-wrapper.properties to add back in the missing snapshots from the repository URL
Check the result with "git diff".
Check the results with "gradlew clean test".
If on Linux check that the Bamboo build should work with "env -i ./bambooBuild"
If everything is successful commit the result "git commit -m ' . . .' -a"
Push to the mainline "git push"
Push to the personal mirror "git push --mirror . . . "
Wait expectantly to see if Bamboo works or not . . .

The release plan

1. Set version

In and in set the version propertybuild.gradle doc.properties

version = '1.0.0'

Also update the ReleaseNotes.txt file.

2.Write what's new

Update the "What's new" section of the user guide as well as the ReleaseNotes.txt file

3. Tag the sources

After a release create a tag in the VCS with sources that were used to make the release. Label the tab using the pattern.proper release-x.x

4. Build the project

Issue a full rebuild either for a snapshot

gradlew clean build [uploadArchives]

or a releaseproper

gradlew clean release [uploadArchives]

Make sure all demos work

gradlew demo

5. Upload the artifacts

Run the Release build plan on Bamboo, which will make all the artifacts available for download.

6. Update the maven repository

Make sure your codehaus credentials are in $USER_HOME/.gradle/gradle.properties

gpars_repoUserName=xxx
gpars_repoPassword=xxx

or specify your credentials directly in the task in and add task to the desired build task:uploadArchives build.gradle uploadArchive

gradlew build uploadArchives

Or

gradlew release uploadArchives

Check out that the artifacts have been successfully uploaded either at for snapshots or at https://dav.codehaus.org/snapshots.repository/gpars/ htt
 for releases. Within a couple of hours the new release should be propagated into theps://dav.codehaus.org/repository/gpars/ proper proper

maven central repository at .http://repo1.maven.org/maven2/org/codehaus/gpars/gpars/

7. Clean up the snapshot repository

After a release the older snapshot artifacts should be removed manually from the snapshot repository at proper https://dav.codehaus.org/snapsh
. Any webdav client, like e.g. AnyClient () should be capable to do so.ots.repository/gpars/ http://www.anyclient.com/download.html

8. Upload the User Guide and docs

The generated User Guide at should be uploaded to ./build/docs/manual http://www.gpars.org/guide/

The javadoc and groovydoc folders should be copied to and http://gpars.org/javadoc/index.html http://gpars.org/groovydoc/index.html respectively
.

9. Update the version

After a release the version in the build file has to be changed to the next version.proper

10. Update JIRA

Proper releases should be also closed in JIRA.

11. Tell the world

People are impatiently waiting for the new GPars features so now it is the highest time to tell them. New releases should be announced atproper
the following mailing lists and sites:

announce@gpars.codehaus.org
user@gpars.codehaus.org
dev@gpars.codehaus.org
user@groovy.codehaus.org
http://docs.codehaus.org/pages/createblogpost.action?spaceKey=GPARS
Any other relevant channel

https://dav.codehaus.org/snapshots.repository/gpars/
https://dav.codehaus.org/repository/gpars/
https://dav.codehaus.org/repository/gpars/
http://repo1.maven.org/maven2/org/codehaus/gpars/gpars/
https://dav.codehaus.org/snapshots.repository/gpars/
https://dav.codehaus.org/snapshots.repository/gpars/
http://www.anyclient.com/download.html
http://www.gpars.org/guide/
http://gpars.org/javadoc/index.html
http://gpars.org/groovydoc/index.html%20respectively
http://docs.codehaus.org/pages/createblogpost.action?spaceKey=GPARS

Xircles Project Page
http://xircles.codehaus.org/projects/gpars

After a release create a tag in the VCS with sources that were used to make the release. Label the tab using the pattern.proper release-x.x

http://xircles.codehaus.org/projects/gpars

	Developer Zone

