
1.
2.

Part 17 - Macros

Part 17 - Macros

print Macro
The Macro will display one or more objects to the screen.print

There are two ways to call the macro.print

With only one argument
With two or more arguments

print "Hello there"
print "Hello", "there"

Output

Hello there
Hello there

In the second case, for every case except the last, it will write the string to the screen, write a space, then move on.

In the end, the two will have the same end result.

assert Macro
The Macro makes sure that a condition is true, otherwise it raises an .assert AssertionFailedException

assert can be called with one or two arguments.
The first argument must always be a boolean condition.
The optional second argument is a string that will be sent if the condition fails.

assert true // this will always pass
assert false, "message" // this will always fail

Output

Boo.Lang.Runtime.AssertionFailedException: message
 at Tutorial.Main(String[] argv)

print Example

assert Example

Recommendation
Never a condition that would, in itself, change your code.assert
e.g. would be a bad idea.assert iter.MoveNext()

1.
2.
3.

using Macro
The Macro can take any number of arguments, it merely duplicates its behavior each time.using

It creates a safety net for objects to be handled during a block, then disposed of as soon as that block is finished.

There are three types of arguments you can declare:

<object>
<object> = <expression>
<expression>

In all three of these, it checks if the underlying is an , which it then disposes of afterward.object IDisposable

import System.IO

using w = StreamWriter("test.txt"):
 w.WriteLine("Hello there!")

This will create the file, write to it, then close it as soon as the block is finished. Makes it very safe and convenient.using

lock Macro
The Macro makes sure that, in a multithreaded environment, that a specified object is not being used and prevents another object fromlock
using it at the same time.

lock must accept at least one argument, and it will put the on all that are given.lock

lock database:
 database.Execute("""
 UPDATE messages
 SET
 id = id + 1""")

debug Macro
The Macro is the exact same as the Macro, except that it sends its messages to instead of debug print System.Diagnostics.Debug Syste

.m.Console

Go on to Part 18 - Duck Typing

using Example

lock Example

http://docs.codehaus.org/display/BOO/Part+18+-+Duck+typing

	Part 17 - Macros

