
Castor JAXB

Castor JAXB improvments
This page will contain the documentation for revised Castor JAXB provider implementation.

Table of content:
Castor JAXB improvments
The ideas

General Implementation issues
Introduce CastorJAXBContextFactory
Marshaller
Unmarshaller
Future enhancement
Functional testing

The implementation
General Implementation issues

The ideas
All of mentioned here things are being realised through task .http://jira.codehaus.org/browse/CASTOR-3160

General Implementation issues
There is quite a number of methods that will require a implementation.

Marshaller:

PP PC public < A extends XmlAdapter > A getAdapter(final Class < A > xmlAdapter)
public Node getNode(final Object node)
PP PC public void setAdapter(final XmlAdapter arg0)
PP PC public < A extends XmlAdapter > void setAdapter(final Class < A > arg0, final A
arg1)

and

PP PC public void marshal(final Object object, final XMLStreamWriter xmlStreamWriter)
(dependency on Castor 1.3.3-SNAPSHOT)
PP PC public void marshal(final Object object, final XMLEventWriter xmlEventWriter)
(dependency on Castor 1.3.3-SNAPSHOT)

and

public AttachmentMarshaller getAttachmentMarshaller()
public void setAttachmentMarshaller(final AttachmentMarshaller arg0)

Unmarshaller:

http://jira.codehaus.org/browse/CASTOR-3160

PP PC public < A extends XmlAdapter > A getAdapter(final Class < A > arg0)
public ValidationEventHandler getEventHandler()
PP PC public Schema getSchema()
public UnmarshallerHandler getUnmarshallerHandler()
PP PC public void setAdapter(final XmlAdapter xmlAdapter)
PP PC public < A extends XmlAdapter > void setAdapter(final Class < A > type, final A
xmlAdapter)
public void setEventHandler(final ValidationEventHandler validationEventHandler)
PP PC public void setSchema(final Schema schema)

and

PP PC public Object unmarshal(final XMLStreamReader xmlStreamReader) (dependency on
Castor 1.3.3-SNAPSHOT)
PP PC public Object unmarshal(final XMLEventReader xmlEventReader) (dependency on
Castor 1.3.3-SNAPSHOT)
PP PC public < T > JAXBElement < T > unmarshal(final XMLStreamReader xmlStreamReader,
final Class < T > type) (dependency on Castor 1.3.3-SNAPSHOT)
PP PC public < T > JAXBElement < T > unmarshal(final XMLEventReader xmlEventReader,
final Class < T > type) (dependency on Castor 1.3.3-SNAPSHOT)
PP PC public < T > JAXBElement < T > unmarshal(final Source node, final Class < T >
type) (dependency on Castor 1.3.3-SNAPSHOT)
PP PC public < T > JAXBElement < T > unmarshal(final Node node, final Class < T >
type) (dependency on Castor 1.3.3-SNAPSHOT)

and

public AttachmentUnmarshaller getAttachmentUnmarshaller()
public void setAttachmentUnmarshaller(final AttachmentUnmarshaller
attachmentUnmarshaller)

JAXBContext:

public Validator createValidator() throws JAXBException
public <T> Binder<T> createBinder(final Class<T> domType)
public Binder<org.w3c.dom.Node> createBinder()
public void generateSchema(final SchemaOutputResolver schemaOutputResolver)

where means and means .PP patch provided PC patch committed

Besides that it seams that JAXBXmlNaming behaviour is incorrect for names written in pascal case for example Name is converted into lowercase
name.
The JAXBXmlNaming#toXml should be revised.

Introduce CastorJAXBContextFactory
As described in javadocs API the JAXBContext reads the jaxb.properties file existing in the given context path package and uses the class
specifed in javax.xml.bind.context.factory to create the JAXBContext. The class must simply implement two methods:

public static JAXBContext createContext(String contextPath, ClassLoader classLoader,
Map properties) throws JAXBException
public static JAXBContext createContext(Class[] classes, Map properties) throws
JAXBException

Marshaller
I think that the marshall methods need to handle the JAXBElement, in simple case just check if passed object is instance of the
JAXBElement and retrieve it's value, in more complex one use the QName from the element and set that as the root element name.
(Done)
The JAXB Marshaller defines set of properties that will need to be handled. (Done - current implementation supports fallowing properties:
jaxb.encoding, jaxb.schemaLocation, jaxb.noNamespaceSchemaLocation, jaxb.fragment - except for the jaxb.formatted.output which
does not have an equivalent. Moreover any other
property will treated as internal Castor property so it is possible to modify the underlying Castor marshaller)

Unmarshaller
The unmarshall methods that creates the JAXBElement as a result should also correclty set the QName of the created element. (Done)
The current implementation uses a single shared unmarshaller instance, this may not be thread safe, especially for methods that
unmarshalls to JAXBElement which sets the expected class.

Future enhancement
Some of the functionality could require to be actually implemented in backing Castor framework - for example handling the attachment through
MTOM/XOP and swaRef.

Functional testing
I think a little bit of time should be spend on functional testing, and this might get quite tedious. Looking, for example, at the @XmlAttribute
annotation, there's a lot of variants to test, requiring POJOs to be annotated slightly different for each test case. That would require us to write a
lot of POJOs and wire them up accordingly in the test classes. Let's see whether we can agree on how to go about this (layout, package
structures, ...).

The implementation

General Implementation issues
Marshaller:

public void marshal(final Object object, final XMLStreamWriter xmlStreamWriter)
public void marshal(final Object object, final XMLEventWriter xmlEventWriter)

Unmarshaller:

public Object unmarshal(final XMLStreamReader xmlStreamReader)
public Object unmarshal(final XMLEventReader xmlEventReader)
public < T > JAXBElement < T > unmarshal(final XMLStreamReader xmlStreamReader, final
Class < T > type)
public < T > JAXBElement < T > unmarshal(final XMLEventReader xmlEventReader, final
Class < T > type)
public < T > JAXBElement < T > unmarshal(final Source node, final Class < T > type)

	Castor JAXB

